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Introduction
We live in a world where AI is pervasive. Besides auto-completing 

sentences as we type, it also populates Google searches before we finish 
our thoughts, enables cars to drive themselves, enables us to speak to 
our phones, and supports language translation. It has been used in 
medicine to identify pathologic specimens, identify mammogram 
lesions, and identify retinal pathology with a level of skill exceeding that 
of trained ophthalmologists [1, 2].

Despite being vilified as a tool that will result in mass unemployment 
and economic disruption, it has also been lauded as a potential savior 
that will liberate humanity from tedious tasks and enable people to 
engage, interact, and exist on a higher level, while at the same time 
vilified as a tool that will lead to massive unemployment and economic 
disruption [3].

ML of various types, but most often deep neural networks, is called 
AI [4]. Although there are many types of neural networks, broadly 
speaking, deep neural networks permit sophisticated recognition of 
subtle patterns in a nonlinear manner using models that contain many 
layers of data abstraction and synthesis, which leads to an uncanny 
ability to “read” mammograms and electrocardiograms (ECGs) or 
recognize faces. The term “artificial intelligence” refers to ML of 
various types, such as deep neural networks [5, 6]. By using models 
containing many layers of abstraction and synthesis of data, deep neural 
networks can recognize subtle patterns in a nonlinear manner. In this 
way, mammograms, ECGs, and faces can be read uncannily. In spite of 
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the fact that deep neural networks provide deep intelligence, they are 
currently limited in their ability to provide spontaneous adaptability or 
general intelligence, as they provide only a narrow type of intelligence 
with very focused skills [7-10]. This narrative review used search terms 
related to AI and medicine and cardiology subspecialties to search 
PubMed and MEDLINE databases without date restrictions. Relevance 
was considered when selecting articles for inclusion.

Mounting evidence reveals that ML will power the new tools that 
drive cardiovascular medicine in the near future. The article highlights 
the rapidly emerging role of ML in cardiovascular medicine [8]. The 
use of AI has included interpreting echocardiograms, automatically 
identifying heart rhythms from ECGs, uniquely identifying individuals 
from ECGs as biometric signals, and detecting left ventricular 
dysfunction from the surface ECG as a sign of heart disease. 
Cardiovascular specialists are unlikely to be replaced by AI, however 
[9-11]. It may instead serve as a tool for skilled practitioners to expand 
their clinical capabilities, make more accurate and timely diagnoses, 
and improve care delivery [12].

AI is unlikely to replace cardiovascular specialists, however. AI 
has the potential to expand the clinical abilities of skilled practitioners, 
to increase the accuracy and speed of diagnoses, and to improve care 
delivery as a whole [13].

It is essential that we understand AI’s strengths, limitations, 
opportunities, and risks, just as we do with any statistical method or 
tool. We explore the nature of ML, how it is developed, the types of 
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of the simplest ML models, optimizes the “mean squared error,” which 
penalizes the difference between the expected value and the observed 
value. We use “cross-entropy” in “logistic regression,” where we have 
to classify a sample into one of two or more categories by assuming 
a binomial distribution for the data [20]. Weights are usually created 
randomly and adjusted after each batch of training samples is evaluated 
using the loss function.

The weights and how well the model performs the task will be 
influenced by a variety of factors during the training stage. An iterative 
process is inherent to machine learning-start with a guess, evaluate 
the data based on that guess, and then refine the guess [21]. To ensure 
computational resources can process the data, large data sets are often 
randomly partitioned into smaller units called batches. As part of 
training, we adjust the weights after each step (learning rate), as well 
as how many epochs the model was shown the entire training size 
(number of epochs), which are called hyperparameters. The key to the 
success of the training stage is optimizing these hyperparameters [22] 
(Table 1).

In training and testing an ML model, the data set used for training 
and testing is more important than selecting the right algorithm and 
hyperparameters. A model will perform poorly in real life if it is not 
based on a clean and versatile data set since all the rules are created 
based on the data. For an algorithm to be useful, a set of rules must be 
created that can generalize well and perform poorly on any other data 
set in exchange for performing well on the given data set [23, 24].

The bias-variance trade-off is known within the ML and statistical 
communities. This term refers to the model’s ability to fit the observed 
data well. When presented with new, subtle data, the variance shows 
how well the model performs [25, 26]. When low bias and high variance 
are combined, it is called overfitting, and while it can also happen with 
traditional algorithms, the risk is much higher when the rules are 
derived automatically by an algorithm designed to recognize patterns 
[27]. A bias-variance trade-off curve with an optimal balance should be 
monitored carefully to avoid overfitting. It is also essential to hide some 
of the data during the training stage and use it to test the algorithm after 
it has been trained.

Natural language processing (NLP)

In electronic health records (EHRs), clinical narratives make up 
more than 80% of the data. Health care professionals are required to 
review and abstract this free-text information manually in busy clinical 
practices [28]. To enable automatic identification and extraction of 
information, these narratives must be converted into a computer-
managed representation because they are unstructured, free-text 
documents [29]. By converting unstructured text into a structured 
form, NLP has enabled automated information extraction from 
narrative texts.

Clinical notes, radiology reports, and pathology reports have 
all been analyzed using NLP [30-32]. Using NLP, for instance, lung 
cancer staging has been extracted from pathology reports, breast 
cancer diagnosis from mammography reports, brain tumor status from 
magnetic resonance imaging reports, and peripheral artery disease and 
critical limb ischemia diagnoses from clinical notes.

problems it poses, and its limitations, as well as some of its current 
and promising applications in cardiovascular medicine. Meanwhile, 
we will emphasize potential risks, such as a potential bias when AI is 
applied to populations outside those represented in a training set, data 
security threats, and data ownership concerns. We must embrace the 
powerful emerging tools enabled by AI to ensure that they are properly 
applied for the benefit of humanity as we care for patients and practice 
cardiovascular medicine. In this review, we aim to provide a foundation 
for understanding benefits.

Principles for Responsible Use of AI in Health Care
We should ask ourselves first and foremost what human purpose AI 

serves, as with any technological innovation. AI shouldn’t be advanced 
just for the sake of advancing AI - it should be developed to improve 
people’s lives and well-being [14].

In order to help alleviate overstretched healthcare systems, AI is 
clearly needed to help meet the growing global demand for healthcare. 
Several articles have already explored how AI can assist healthcare 
providers in diagnosis and treatment - improving health outcomes at 
lower cost, while improving staff and patient satisfaction (known as the 
Quadruple Aim) (Figure 1).

General AI Principles for Clinicians
ML

Human experts develop algorithms by deriving rules based on 
their experience based on prior data. To create the relationship between 
inputs and outputs, programmers will implement these hard-coded 
rules [15]. As a result, an expert system relies on static knowledge of 
the entire process and works only within the parameters programmed 
into the computer. On the other hand, in supervised learning, we use a 
general algorithm, such as a neural network, to approximate a complex 
mathematical relationship between input data and expected outputs 
[16]. The input and output of some models, such as convolutional 
neural networks, can be optimized without specific knowledge of their 
content or structure. The algorithm finds insights in the data using its 
inner structure and statistics when we use unsupervised learning as 
clustering [17]. An AI model can discover new relationships in data 
that have eluded humans because the rules are created without human 
intervention. As part of the training algorithm, these discoveries are 
quantified as coefficients or weights of the function being approximated.

There are many AI architectures and algorithms that we can use 
for a specific task—some are better suited to images or data with spatial 
correlation, some are better suited to structured data or language 
processing, and some are better suited to deciding which action to take 
in several stages [18]. As soon as we select the preferred algorithm, 
we must train it by showing it examples of inputs with or without the 
expected outputs and adjusting the weights and parameters of the 
model until we find the minimum error [19]. Gradient descent methods 
are used for optimizing, and the loss function that represents the error 
we want to minimize is optimized for. A linear regression model, one 

Figure 1: 5 principles for responsible use of AI in health care.

Table 1: Types of ML.

Type of ML Examples
Supervised learning Logistic regression and random forests

Unsupervised learning Hierarchical clustering, tensor factorization
Reinforcement learning Robotics and control systems

Deep learning Image recognition (echocardiography, chest x-ray, and  
computed tomography)
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Nuclear cardiology

A number of routines in nuclear cardiology have already 
incorporated AI techniques. As a result of artificial intelligence 
algorithms, single-photon emission computed tomography (SPECT) 
and myocardial perfusion imaging (MPI) can be performed completely 
automatically, including motion correction, reconstruction, oblique 
reorientation on tomography, quantification, and high-level analysis 
[40, 41].

Computer-aided adjunctive diagnostic tools have been developed 
to aid expert readers in identifying hypoperfused myocardium using 
commercialized and Food and Drug Administration (FDA) approved 
image viewing software programs that compare myocardial perfusion 
distributions to databases of normal myocardial perfusion distributions 
[42]. Through automation and the availability of digital image data for 
ML, AI algorithms have been applied to SPECT MPI data, alone or in 
combination with clinical characteristics, to improve the prediction 
of angiographic coronary artery disease (CAD), prognosis, and/or 
revascularization, and to facilitate structured reporting and provide 
clinical decision support (CDS) in recent studies.

Enhanced diagnosis

An ML algorithm that incorporates only imaging variables 
(perfusion deficits, ischemic changes, and ejection fraction [EF] 
changes between stress and rest SPECT MPI by quantitative software) 
outperformed individual quantitative imaging parameters in overall 
diagnostic accuracy (86% vs 81%; p < 0.01) per patient [3, 43].

Comparing the ML algorithm to both visual readers, the area under 
the curve (AUC) for detecting obstructive CAD was also significantly 
higher for the ML algorithm [44]. In another study, the same group 
incorporated both clinical and imaging variables (total perfusion deficit 
(TPD) calculated by an automated program) into an AI algorithm.

The investigators documented higher accuracy with ML (87.3% ± 
2.1%) than with 1 of 2 expert readers (82.1% ± 2.2%) or automated TPD 
(82.8% ± 2.2%; p < 0.01) and higher AUC (0.94 ± 0.01) than TPD (0.88 
± 0.01) or 2 visual readers (0.89 ± 0.01 and 0.85 ± 0.01; p < 0.0001) for 
the detection of obstructive CAD. Using a solid-state SPECT scanner 
and 1638 patients without known CAD, deep learning was found to 
have higher AUC both per-patient (0.80 vs 0.78; p < 0.01) and per-vessel 
(0.76 vs 0.73; p < 0.01) basis.

With the DL threshold set to the same specificity as TPD, per-
patient sensitivity improved from 79.8% (TPD) to 82.3% (DL) (p < 
0.05), and per-vessel sensitivity improved from 64.4% (TPD) to 69.8% 

Current and Future Applications of AI in Specific Areas
Echocardiography

In order to evaluate cardiac structure and function in a timely and 
cost-effective manner, echocardiography remains the predominant 
imaging modality. The accessibility, quality, and diagnostic utility of 
echocardiography vary considerably despite its increasing availability 
for diagnostic and point-of-care applications. A high level of operator 
experience is needed for the acquisition and interpretation of 
echocardiograms, which makes it an area that can be enhanced and 
standardized with AI [33]. A selection of recent echocardiography 
AI research indicates that the interest in this topic has increased 
considerably as convolutional neural networks have matured for image 
classification in ML. Echocardiography AI platforms can be developed 
to take advantage of the enormous amount of clinical echocardiography 
data. By automating quantification, identifying pathologic features 
(valve disease, regional wall motion abnormalities, cardiomyopathies), 
and applying outcome data to the point of care, innovations in this 
area may improve interpretation, standardization, and workflow. 
Detecting subtle or unrecognized imaging features that can indicate 
subclinical diseases or patient outcomes is the strength and prospect of 
echocardiography AI research [34, 35].

Despite the continuing improvement of AI models, it is imperative 
to acknowledge that AI must overcome several important challenges 
before it can be safely applied in clinical practice. It is essential to 
consider the clinical characteristics and quality of development 
data when developing a model. In order to develop a robust 
echocardiography AI platform, it will be necessary to train and validate 
it using a large number of studies that include a wide range of clinical 
characteristics, pathologic characteristics, ultrasound machine vendors, 
and image quality. Currently, most echocardiography AI studies are 
limited by institutional, geographic, or even echocardiography machine 
brand boundaries, resulting in limited sample sizes that risk overfitting 
and limit generalizability [36]. Despite the inherent variability in 
interpretation and measurement, echocardiography AI research has 
largely relied on human interpretation as the ground truth.

Echocardiography is poised to be revolutionized by AI. With AI-
based models of echocardiography, patient outcomes can be improved, 
point-of-care decisions can be made more accurately, and diagnostic tools 
will be made more widely available. Echocardiography AI is expected to 
impact patient care, and we look forward to clinical studies that document 
improved clinical outcomes and cost effectiveness [37-39].

Figure 2: Clinical applications of AI in echocardiography [22]. Figure 3: The annual incidence of heart failure reported in US [76].
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risk, and optimize patient care.

Electrophysiology

Among the opportunities for integrating AI into electrophysiology 
are data management (i.e., how to manage large amounts of patient 
data), data interpretation (democratizing access to expert-level 
interpretation of often complex data), and real-time data integration 
across multiple methods [56]. Additionally, evolving findings suggest 
that the ability to screen for disorders not typically associated with the 
ECG may provide scalable opportunities to improve population health 
by using AI-enhanced, cost-effectively acquired electrophysiologic data 
(e.g., ECGs).

The integration of ambulatory-obtained ECGs into clinical practice 
is one of the major current debates in electrophysiology. In many cases, 
cost-effective screening tools can be used to screen a population before 
they have become established as patients with a known cardiovascular 
disorder, such as implantable loop recorders and smartphone- or 
smartwatch-enabled ECG devices. An individual may purchase an 
ECG device over the internet, record their own ECGs, and then need 
to interpret the results accurately [57-59]. The accuracy and automatic 
interpretation of these ECGs has improved in recent years, but there is 
still a substantial risk of false-positives and false-negatives.

As ECGs become more affordable at a population level, human-
based review may not be scalable as health care settings become more 
adept at reading them. Research is underway to assess the effectiveness 
of AI techniques for interpreting these strips, as well as referring 
patients to physicians, such as electrophysiologists or cardiologists 
[60]. Computational needs and effectiveness cannot be evaluated at the 
population level at the present time.

The interpretation of electrophysiologic data is another current 
issue in electrophysiology. QT interval measurement, for example, is 
highly variable and has poor accuracy even among cardiologists and 
some electrophysiologists, which is important for identifying those 
at risk for sudden death or antiarrhythmic drug toxicity [61]. DL AI 
techniques may help recognize risk imposed by specific QT intervals 
based on the ECG alone, according to initial findings.

Additionally, by using expert-level QT interpretation to train 
neural networks, non-QT experts, non-electrophysiologists, and 
non-cardiologists may be able to improve interpretation accuracy. In 
addition to intracardiac mapping of arrhythmias, these principles also 
apply to other electrophysiologic data [3, 62, 63]. A major opportunity 
in electrophysiology today is how to properly interpret and optimize 
therapy for a given patient by integrating often multiple complementary 
but separately obtained data streams. When patients with arrhythmias 
undergo invasive evaluation for cardiac ablation, preoperative imaging 
(e.g., magnetic resonance imaging to evaluate scar distribution, 
electrocardiogram to determine the source of the arrhythmia) 
and intraoperative imaging (e.g., intracardiac echocardiography, 
fluoroscopy, and electroanatomic mapping) are used to optimize 
treatment. Due to the fact that these data were obtained at different 
points in time using different techniques, it is difficult to integrate 
them [64, 65]. Data suggests that AI techniques might facilitate data 
integration across modalities, which could, in turn, help the physician 
identify and target relevant sites responsible for the patient’s condition 
more efficiently or effectively.

Additionally, AI applied to electrophysiological data has the ability 
not only to democratize, scale, and facilitate accurate interpretation 
and synthesis of data, but also to improve population health through 
nonhuman-interpretable insights. The reason for this principle lies 

(DL) (p < 0.01). For SPECT MPI, AI algorithms improved the prediction 
of obstructive CAD by approximately 2.5% and approximately 5% 
over current clinical methods, respectively. A number of other studies 
have also shown that trained neural networks can successfully identify 
coronary arteries with stenotic lesions compared with expert physician 
visual analysis [45].

Prediction of treatment and prognosis

In 713 SPECT MPI studies with corresponding invasive angiography 
within 90 days after the initial MPI scan, AI was also tested for its ability 
to predict early revascularization in patients with suspected CAD. In 
order to predict revascularization events, an ML algorithm integrated 
several automatically derived imaging variables as well as clinical 
parameters such as sex, diabetes mellitus and hypertension history, 
ST-segment depression on baseline ECG, ECG and clinical response 
during stress, and post-ECG probability (33 variables in total) [46]. The 
AUC for revascularization prediction by ML (0.81 ± 0.02) was similar to 
that of one reader (0.81 ± 0.02) and superior to another reader (0.72 ± 
0.02; p < 0.01). Thus, ML was found to be comparable to or better than 
the experienced reader in the prediction of early revascularization after 
MPI in this study. Developed an AI algorithm to predict major cardiac 
events (MACEs) based on 28 clinical, 17 stress test, and 25 imaging 
variables (including TPD) [47-49]. The authors compared AUCs for 
outcome prediction between ML combined with all available data (ML-
combined), ML combined with only imaging data (ML-imaging), and 
ML combined with all available data (ML-imaging), as well as visual 
diagnosis (physician diagnosis) and quantitative imaging analysis 
(stress TPD and ischemic TPD). They found that MACE prediction 
was significantly higher for ML-combined than ML-imaging (AUC, 
0.81 vs 0.78; p < 0.01) [50]. The ML-combined model also had higher 
predictive accuracy compared with physician diagnosis, automated 
stress TPD, and automated ischemic TPD (AUC, 0.81 vs 0.65, 0.73, 
and 0.71, respectively;  p < 0.01 for all). As a result of ML-combined 
diagnosis compared with visual physician diagnosis, 26% of risks were 
reclassified (p < 0.001). Using AI, the authors proposed that MACE risk 
computations could be personalized in patients who underwent SPECT 
MPI based on their study results [51].

AI-driven structured reporting and CDS

AI-driven algorithms have also been incorporated into the first 
and only FDA-approved nuclear imaging software to use a CDS tool 
and natural language for automated report generation [52]. Over 230 
rules of perfusion, reversibility, function, and patient demographic 
characteristics are integrated into the system, along with additional 
information (if available) on prone versus supine images, attenuation-
corrected images versus nonattenuation-corrected images, as well as 
quality control information [53]. Using a subset of 1000 patients, a 
study validating this AI-driven system for CAD detection found no 
significant differences between the AI-driven structured report and 9 
experts’ impressions [54].

Despite the widespread use of quantitative tools in nuclear 
cardiology, higher-level tools combining multiple features and clinical 
data are still rare. Recent research studies describe applications in 
clinical practice with high potential. Additionally, upcoming AI focus 
in nuclear cardiology should include refining and building upon studies 
that enhance diagnosis and prognosis, as well as developing AI-driven 
algorithms to assist clinicians in determining the appropriateness of 
tests, test selection, scheduling, workflow prioritization, protocoling, 
reporting, and managing patients [55]. Physicians and other health care 
professionals will not be replaced by these developments. Rather, they 
will be provided with highly accurate tools to detect disease, stratify 
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available across the country, diagnostic and management decisions are 
subject to considerable variation during critical early-stage interactions. 
A series of predictive questions could be used by intelligent algorithms 
in the future to establish a diagnosis before transportation services 
arrive based on the patient’s medical history and risk factors. The 
humble ECG is likely to be replaced by technology that will provide 
definitive diagnostic information within 5 to 10 minutes of arriving in 
the emergency department with devices that can scan the skin and place 
an intravenous line without human intervention and high-resolution 
computed tomography scanners that provide both anatomical and 
physiologic assessment of coronary arteries [69]. Invasive coronary 
angiography may soon be obsolete due to the above steps, which may 
not even require human intervention. As of now, artificial intelligence-
based diagnostics have been used to analyze coronary artery lesions 
with mixed results. Angiographic analysis accuracy may approach that 
of fractional flow reserve at 82%.

Inefficient interfaces and high start-up costs have limited magnetic 
navigation systems and robotics for coronary intervention over the past 
decade. Through the use of multimodal technologies that blend real-
time thermal, ultrasound, and flow data with robotics and previously 
acquired diagnostic computed tomographic images, AI-guided 
vascular access and interventional device navigation to the lesion site 
will be possible. AI-directed coronary revascularization is also possible, 
and the interventional cardiology team can monitor and control 
the equipment without exposing themselves to radiation [70]. The 
development of nanoparticles that can self-navigate to atherosclerotic 
tissues and deliver targeted therapies is already underway, and ligand-
linked aggregation and magnetic guidance further concentrate the 
beneficial effects while minimizing adverse effects on other organs.

AI could also be applied to valvular disease, congenital anomalies, 
and life support technologies. The future of coronary angiography and 
interventional cardiology may be determined by the ability to assess 
anatomic structures in real time, and to integrate this information 
with 3-dimensional bioplotters that can generate custom devices 
incorporating autologous living cells as well as polymer and rigid 
metallic composites on demand in cardiac catheterization laboratories.

Heart failure (HF)

Current HF care models are insufficient because delays in 
diagnosis are common, rates of HF risk factor recognition, treatment, 
and control are relatively low, and most patients with HF and reduced 
EF (HFrEF) are not receiving therapies or doses of therapies proven 
to reduce mortality and morbidity [71]. Further, the pathophysiologic 
characterization of HF phenotypes remains rudimentary. These gaps 
can be addressed by AI-enabled strategies.

HF prevention

HF preventive interventions have been shown to reduce HF 
incidence dramatically in clinical trials. The prevention of HF requires a 
method to identify patients at risk for HF as well as the prevention of HF 
itself. It is possible to target more intensive and expensive interventions 
to a subset of patients at highest risk, thereby enhancing feasibility and 
reducing overall costs. Overall benefit will be determined by the efficacy 
of the intervention component [72].

There are a number of accurate HF risk scores available, but they 
are not used clinically. A supervised machine learning algorithm was 
developed by Ng et al. [24] using EHR data to predict incident HF. 
As a result of the ML algorithms, AUC for predicting future HF was 
approximately equal to 0.79, however predicting imminent HF (this 
is happening within six months) was much more accurate, limiting 

in the fact that ECGs often contain subtleties that are not readily 
interpreted by humans. ECG alone can, for example, be used to identify 
conditions such as low EF with a high degree of accuracy, as we recently 
described. A scalable, low-cost method of improving risk stratification 
at a population level may be possible based on the ECG for several 
other conditions. Therefore, recognizing underdiagnosed, potentially 
treatable conditions from an ECG in a cost-effective manner could 
improve population health.

CAD detection and prognosis

According to ECG and biomarkers, acute coronary syndrome 
(ACS) is classified as ST-segment elevation myocardial infarction 
(STEMI), non-STEMI (NSTEMI), and unstable angina (UA). It is 
imperative to diagnose STEMI as soon as possible to facilitate timely 
management, and an ECG evaluation is required to facilitate this. Using 
a smartphone platform with a single-lead diagnosis is now documented 
to be feasible. As a result of this technology being widely disseminated 
and paired with ML interpretation, STEMI patients may be rapidly 
triaged. Having an institution that offers percutaneous coronary 
intervention could facilitate an expedited transfer in a timely manner, 
potentially improving outcomes [3, 66]. Out-of-hospital cardiac arrests, 
most of which are caused by ACS, are also being explored. Using smart 
home speakers and phones, machine learning algorithms have been 
used to analyze home recordings to identify agonal breathing, a typical 
sign of cardiac arrest.

In the vast majority of arrests that occur unwitnessed at home, 
accurate detection of such recordings could enable the activation 
of emergency response. It can be more challenging to manage ACS 
outside STEMI (for example, NSTEMI and UA). ML has been used to 
interpret 12-lead ECGs in this area in a preliminary manner. According 
to recent studies, ML improves upon existing validated risk scores 
such as TIMI’s (Thrombolysis in Myocardial Infarction) or GRACE’s 
(Global Registry of Acute Coronary Events) in the management of UA/
NSTEMI. In the same way, a longer-term prognosis about mortality or 
treatment complications can be improved. By refining the method for 
identifying high- and low-risk patients, resources will be better utilized, 
and care will be more individualized. Multimodality noncardiac data 
are being synthesized to further refine ACS diagnosis, treatment, and 
prognosis. The use of AI will likely improve the care of patients with 
stable CAD as well, for example, identifying those who will benefit 
from revascularization or balancing the antithrombotic benefit with the 
risk of bleeding. In the work described, AI has the potential to prevent 
and treat CAD in a wide range of ways. Randomized controlled trials 
remain crucial for clinical validation in many cases. Even in this early 
stage of ML’s influence on CAD, it is promising that it can provide better 
prognosis and uncover new risk factors which will further improve the 
care of patients [67].

Coronary angiography and interventional cardiology

Cardiovascular innovation has traditionally been led by 
interventional cardiology. The past decade has seen an increase in the 
use of minimally invasive (as well as invasive) cardiovascular surgical 
procedures, invasive intravascular imaging, exercise hemodynamics, 
and robotics. AI is expected to make rapid progress in predicting 
diagnostic outcomes, designing therapeutic strategies, selecting devices, 
optimizing procedures, and avoiding complications [68]. Research 
into the use of AI for coronary artery assessment has begun with the 
recent CEREBRIA-1 study, which demonstrated that ML and AI are 
comparable when determining the physiologic importance of coronary 
lesions and the recommendation for revascularization.

Even though a good emergency response system is currently 
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that AI-enabled HF population management strategies favorably 
impact therapy utilization and outcomes would be needed to justify the 
considerable resources needed to implement them, promote uptake by 
patients and physicians, and exclude adverse unintended consequences.

Role of AI in elucidating HF pathophysiology, precision 
medicine, and novel therapeutics

As of now, HF is typically defined by its EF and presumed etiology. 
Cluster analysis, for example, may identify unique HF phenotypes 
that can then be characterized using traditional statistical methods 
or supervised learning techniques to determine whether phenotypes 
have different prognoses or tolerances for or responses to therapy [78]. 
The HF with preserved EF (HFpEF) and HFrEF phenotypes have been 
identified using clinical data as input variables in patients with HFpEF 
and HFrEF. Phenotyping patients with HF and identifying precision or 
novel therapies for HF will likely require data beyond clinical features. 
It may be possible to identify unique pathophysiologic phenotypes with 
novel therapeutic targets, diagnostic/prognostic biomarkers for clinical 
trials by combining genomic and circulating proteomic data with 
new clinical data such as microbiome and AI-enabled ECG or image 
analysis.

Preventive cardiology

A number of concepts related to CAD are considered foundational 
to modern medicine, including the identification and addition of 
associated conditions called  risk factors  to overall models of risk 
stratification. As AI becomes more capable of analyzing variables, 
identifying nonlinear associations, and identifying novel risk factors, it 
will build on this foundational work.

It is a valuable yet imprecise tool that is commonly used today 
when assessing risk for CAD and other atherosclerotic diseases. Due to 
the identification of nonlinear relationships, an ML algorithm improved 
risk stratification dramatically for the same 9 traditional risk factors, 
detecting 13% more high-risk individuals and prescribing 25% less 
statin therapy for low-risk individuals [79]. Another study, however, 
emphasized the importance of including nontraditional risk factors in a 
pooled cohort risk calculator by using 735 variables per individual. The 
prognostic performance of the algorithm using hundreds of variables 
was no better than that using only standard CAD risk factors, contrary 
to what would be expected after including a wealth of data in the 
algorithms.

By incorporating nontraditional and unknown risk factors, ML 
is an innovative and robust tool for cardiovascular risk stratification. 
Using biosignals such as retinal fundus images obtained from the UK 
Biobank, cardiovascular risk factors were predicted without considering 
other clinical characteristics [80]. An ML algorithm has also been used 
to analyze voice recordings taken with a smartphone to identify features 
that may be related to CAD.

Digital biomarkers of information may become available in a variety 
of forms, such as these examples. A number of accepted paradigms 
may need to be changed in the approach to predicting atherosclerotic 
cardiovascular events, such as assessing outcomes with a time horizon 
lower than 10 years, using serial data collected over time, and evaluating 
unsupervised learning methods instead of selecting variables based on 
biologic plausibility.

CDS

With the proliferation of diagnostic and therapeutic options and 
ever-increasing medical knowledge, CDS at the point of care is an 
urgent necessity to ensure adherence to guideline recommendations, 

the possibility of modifying risks in advance [73]. ML algorithms 
embedded in the EHR may not have better predictions than traditional 
models, but they could provide physicians (and patients) with instant 
risk information. As HF risk features change, AI-enabled ECG or image 
analysis, wearable devices, and other data can be incorporated into the 
prediction algorithm to provide more accurate prediction in regions 
with unique HF risk factors and adjust over time.

HF risk assessment tools developed in the future should be 
accompanied by interventions aimed at reducing HF incidence a priori. 
To encourage clinicians to treat HF risk factors, clinicians could use a 
novel care model, a specific therapeutic agent, or smart decision support 
tools. For effective strategies to reduce HF incidence, clinical trials need 
to evaluate risk prediction and intervention strategies [74].

HF hospitalization prevention

A method for identifying patients at risk as well as a hospitalization 
prevention intervention are also necessary in order to prevent HF 
hospitalizations. It is unfortunate that AI-based models have been 
limited in their performance for readmission prediction, as well as 
traditional statistical models. Three studies have used supervised ML, 
including DL algorithms in large cohorts, to predict readmissions after 
HF hospitalization. AUCs ranged from 0.63 to 0.71. Consequently, 
different algorithms need to be improved to improve their predictions 
of HF readmissions. It is more difficult to prevent readmissions once 
increased risk has been recognized with ML, even though it may 
enhance risk prediction [3, 75]. Hospitals have adopted multiple 
strategies to reduce readmissions, but the impact has been minimal. It 
has proven ineffective to prevent admissions or readmissions by using 
remote monitoring using external telemonitoring systems or implanted 
devices (defibrillators or pacemakers), and the only effective remote 
monitoring strategy for HF hospitalizations is based on pulmonary 
artery pressure.

A significant increase in short- and long-term mortality after HF 
hospitalization has been linked to efforts to reduce readmissions.  A 
clinical trial evaluating AI-enabled hospitalization risk prediction and 
novel AI-enabled intervention strategies is needed to ensure efficacy 
and safety.

HF population management

As a result of AI analytics, highly actionable information may be 
provided in real time to patients with HF, identifying those who are 
undiagnosed, eligible for medical therapy but not receiving optimal 
doses, non-adherent to their treatment plan, or most likely to benefit 
from certain specific HF therapies. The patient and physician could 
receive AI-generated information in novel and potentially AI-generated 
formats that may influence behavior and uptake of therapy (decision 
aids for patients, education tailored to specific issues, support group 
contacts, or other regional or health care system-specific resources) 
[76]. A similar approach is used in highly successful commercial 
applications of AI analytics, a level of success that hasn’t been reached 
with the use of AI in health care.

Standard EHR CDS tools can identify a patient with a basic 
indication for a specific HF therapy; for example, patients with low 
EF and a prolonged QRS duration would be eligible for cardiac 
resynchronization therapy (CRT). However, AI techniques could vastly 
improve the value of CDS by determining whether the patient meets all 
other indications for CRT [77]. Further, given that a third of patients 
do not respond to CRT, AI techniques could identify patients with a 
higher likelihood of response to CRT, as 2 recent studies of AI analytics 
in CRT-eligible patients suggest. Ultimately, clinical trials documenting 
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clinicians, data scientists, and statisticians should work together in team 
science [83].

Phenotyping and risk prediction

As a result of the cumbersome nature of existing approaches 
and scoring systems and the fact that they are not reproducible well 
across populations, case identification and outcome prediction must be 
improved in order to increase accuracy and effectiveness.

Additionally, ML can be applied to other types of structured or 
unstructured data in addition to the data-rich environment of the EHR. 
In addition to ECG and echocardiography data, other imaging studies 
may also be considered.

A phenotyping application of ML is the characterization and 
prediction of survival of patients with HFpEF. HFpEF patients were 
divided into three distinct groups using unsupervised ML. Their next 
step was to examine the differences in death rates and hospitalizations 
among groups using supervised learning [84]. In addition to being 
validated with other cohorts, these promising data illustrate how AI 
can be incorporated into an HER’s rich environment. Using AI for ECG 
data, 44,959 patients with left ventricular dysfunction despite having 
no symptoms. Convolutional neural networks were trained to identify 
patients with ventricular dysfunction based on ECG data alone, defined 
as an EF of 35% or less. According to an independent study of 52,870 
patients, the network model yielded values of 0.93, 86.3%, 85.7%, and 
85.7% for AUC, sensitivity, specificity, and accuracy. In this study, AI 
was applied to ECG data to identify ventricular dysfunction.

Clinical trials

Recruiting trial participants is widely recognized as inefficient 
and overly costly, which leads to delays in the identification of new 
treatments and ultimately patient care. By applying AI to the EHR, 
we can improve the efficiency of prescreening eligibility and matching 
patient characteristics to trial inclusion and exclusion criteria.

Wearable sensors

Wearable sensors are being extensively researched for their use 
in disease prevention and management, and AI has a unique position 
to help in this field. Smartwatch data can be used to detect atrial 
fibrillation, for example. When compared with a reference standard 
ECG, a deep neural network trained using heuristic pretraining 
showed promising performance. Study results showed that smartwatch 
photoplethysmography coupled with a deep neural network could 
passively detect atrial fibrillation with some loss of sensitivity and 
specificity compared with criterion-standard ECGs [3, 85].

Moving Forward: Addressing the Challenges When 
Implementing AI

There is a risk of bias, limited generalizability, low quality of data, 
and other limitations in publications, and how to find them. In light of 
the increasing likelihood of AI’s application to medicine, it is important 
to consider the pitfalls in its implementation. Indeed, there have been 
many examples in the lay press of promising technologies that fell 
short of expectations after being tested on a broader scale. Among the 
examples are facial recognition software that fails to recognize diverse 
populations, AI that may reflect historical bias and perpetuate inequity 
in the criminal justice system, and even medical screening tests that are 
poorly generalizable.

Poor quality and limited diversity of data sets used to train the 
algorithms can cause such problems, as can disparities in outcomes or 
bias in human behavior. Garbage in, garbage out, as the old adage goes, 

standardize care, and improve decision making and outcomes in an era 
of ever-increasing medical knowledge and complexity.

CDS systems are increasingly integrating with EHRs to provide up-
to-date medical knowledge and evidence-based guidance to physicians 
at the point of care as part of the meaningful use requirements of the 
Health Information Technology for Economic and Clinical Health Act. 
Up until recently, most CDS systems used in health care could only 
access structured data within EHRs, such as laboratory results. It is 
possible to extract information from unstructured clinical narratives 
using natural language processing. It was previously not possible to 
generate automated input to CDS systems built into EHRs using NLP 
tools [3, 81].

In addition to searching digital EHRs with NLP, electronic tools 
can also provide automated inputs to CDS programs that deliver 
patient-specific individualized information to enable patient-centered 
decisions at the point of care. Data elements extracted from EHRs (e.g., 
laboratory test results) may be combined with patient information 
acquired by NLP.

Promising AI developments outside cardiology

An ophthalmology study found excellent accuracy (AUC of 0.989), 
sensitivity (97%) and specificity (91%) using convolutional neural 
networks trained on more than 100,000 retinal fundus images. Research 
from Google Health and academic institutions in radiology showed 
that DL models based on chest radiographs previously interpreted by 
radiologists performed similarly for pneumothorax (AUC, 0.95), nodule 
or mass (AUC, 0.72), airspace opacity (AUC, 0.91), and rib fractures 
(AUC, 0.86). According to a recent mammography study, conducted 
jointly by investigators from the United States and the United Kingdom, 
false-positive rates decreased by 5.7% and 1.2%, respectively, and false-
negative rates decreased by 9.4% and 2.7%, respectively.

In an independent study involving 6 radiologists, the AI model 
outperformed all human readers, and the AI model’s AUC outperformed 
the radiologists’ AUC by a margin of 11.5% [82]. Algorithms have also 
been shown to be able to distinguish between benign and malignant 
skin lesions using pattern recognition, and to screen for autism by 
analyzing short videos of children.

Applications of AI to optimize cardiovascular research

In order to fully exploit data-rich platforms, such as whole-
genome sequencing, mobile device biometrics, and electronic 
health records, AI applications, including ML and deep learning, 
are crucial.  Cardiovascular diseases are being diagnosed, predicted, 
prevented, and treated using ML. As a result of these new methods, 
large volumes of data can be integrated quickly, diagnosis and treatment 
can be more personalized, and latent relationships can be detected 
more easily. However, they pose new methodological challenges. 
Standardizing phenotypes is necessary to maximize reliability, and 
integrating heterogeneous data with EHRs is essential. In order for 
data to be traceable, valid, and reproducible, workflows must be 
documented. When designing studies and interpreting results, new 
biases such as the digital divide and differential internet access by 
geography, population, and socioeconomic status must be taken into 
account. As a final consideration, missing data and variations in care 
delivery must be taken into account. The data contained in medical 
records, unlike primary data collection, relate directly to the patient’s 
health status and care-seeking behavior, in addition to the clinician’s 
care and documentation. The time of observation is determined by the 
patient and physician, rather than the researchers, so the inferences 
can vary. In order to establish the validity and reliability of these tools, 
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regulation provide some frameworks for the importance of engaging 
the patient/consumer in the release of the information; many other 
countries have similar restrictions on data sharing related to health care 
[93].

There are, however, some academic journals that have adopted 
data-sharing policies that require open sharing of data that may conflict 
with such regulations. AI is now using large volumes of data that are 
much harder, possibly impossible, to identify, unlike traditional research 
studies [94]. Additionally, there are questions concerning the value and 
ownership of health care data outside the context of regulatory and 
ethical considerations. Annotating data sets for AI research may require 
substantial investments in technical personnel and equipment by health 
care organizations. Health care data ownership may be further clouded 
by the intellectual contribution in parallel with data resulting from direct 
patient contributions. The ownership of medical record information 
varies from state to state, ranging from the hospital/physician owning 
the data to the patient owning the information to the topic not being 
addressed at all from a legal standpoint. Health care institutions may 
be able to generate revenue streams as value-based payment models 
become more prevalent. Intellectual property may be lost if the data is 
shared publicly [95, 96]. Strategic partnerships may be the way forward. 
It will be up to each individual to decide how, and if, data will be shared. 
Also, partnering organizations may cease to exist or be acquired by 
another organization opportunistically. DeepMind’s data archives were 
acquired by Google, which effectively ended a previous commitment 
not to release the data. The collaboration and availability of data will 
continue to be key to advancing health care. Data ownership (or data 
control) and data sharing will be refined through these collaborations.

Conclusion
Aside from regulatory and ethical considerations, there are 

questions regarding the ownership and value of health care data. Health 
care organizations may need to invest significantly in technical personnel 
and equipment to annotate data sets for AI research. Intellectual 
contributions to health care data may further cloud ownership of data 
resulting from direct patient contributions. States vary on who owns 
medical record information, ranging from hospitals/physicians to 
patients to not addressing it at all from a legal standpoint.  With the 
advent of value-based payment models, health care institutions may 
be able to generate revenue streams. Public sharing of data may result 
in the loss of intellectual property.  The future may lie in strategic 
partnerships. Every individual will be responsible for deciding how and 
if to share their data. It is also possible for partnered organizations to 
cease to exist or acquire another organization opportunistically. Data 
archives from DeepMind were acquired by Google, which effectively 
ended DeepMind’s non-disclosure commitment.  Health care will 
continue to advance through collaboration and data availability. These 
collaborations will refine data ownership (or data control) and data 
sharing.
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